Technical seminar – WP2 – HMGU

Bacterial communities response to heavy metals in rhizocompartments of *Miscanthus* x *giganteus*

Urska Zadel, Joseph Nesme, Viviane Radl, Michael Schloter

Phytoremediation driven energy crops

local energy carrier

Research objectives

Evaluating the impact of metal contamination on the bacterial community of biomass producing plant in controlled conditions

- In which rhizocompartments of *M. giganteus* microbial communities will respond to metal treatment?
- 2. Who are the main microbial responders to metal treatment?
- Do the responders possess known PGPR properties?

Experimental setup

- Miscanthus x giganteus rhizomes acclimatized in non-contaminated agricultural soil for 3 months
- Application of two different concentrations of Pb, Zn, Cd:
- Sampling after 3 months:
 - Bulk soil (BUL),
 - Rhizosphere (RH),
 - Rhizoplane (PL),
 - Endosphere (END) surface sterilized.

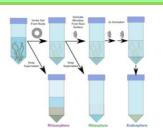
10x dil.:

Pb: 54,7 mg/kg Zn: 217,5 mg/kg Cd: 2,1 mg/kg

100x dil.:

Pb: 5,5 mg/kg Zn: 21,8 mg/kg Cd: 0,2 mg/kg

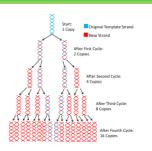
- Analyses:
 - Total and bioavailable metal concentrations in soil and roots
 - Pedological parameters
 - qPCR based assessment of bacterial abundance
 - Preparation of Bacterial 16S rRNA sequencing libraries

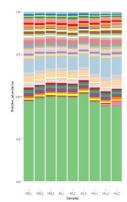


Workflow

Sampling Endosphere Rhizoplane Rhizosphere Bulk soil

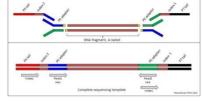
Sample processing




DNA extractionMoBio PowerSoil DNA Isolation Kit

PCR

Bacterial 16S rRNA gene, region V3-V4



Data analysis

Library preparation

Leggend and color coding

H₂O ... H₂O treatment

AN ... Acetate (acetic acid) and nitrate (ammonium nitrate) treatment

HM ... Heavy metal (Pb, Zn, Cd) treatment

IETU – Institute for Ecology of Industrial Areas, Katowice, Poland

Pedological parameters

Silt loam texture

Sand		Silt	Clay	
2 mm-63 μ	m 6	3 μm-2 μn	n <2 μm	
18,9		58,6	22,5	

Treatment	DOC mg/g of dry soil	TNb mg/g of dry soil	Ammonium μg/L of dry soil	Nitrat mg/L of dry soil	Nitrit μg/L of dry soil	рН
H2O	a 0.12 ± 0.01	b 0.01 ± 0.00	a 0.44 ± 0.09	b 0.00 ± 0.00	LOQ	b 7,08 ± 0,01
AC10x	b 0.04 ± 0.00	a 0.02 ± 0.00	b 0.31 ± 0.04	a 0.02 ± 0.00	0.06 ± 0.01	a 7,13 ± 0,02
HM10X	b 0.06 ± 0.00	a 0.02 ± 0.01	b 0.26 ± 0.03	a 0.02 ± 0.01	LOQ	c 7,03 ± 0,01

Total and bioavailable metal concentrations in soil

AVERAGE depth by replicates (3x)

ICP-AES Prof. Michalke, BGC

	AVERAGE depth by replicates (5x)						
		TOTAL conc.			BIOAVAILABLE conc.		
		Pb	Zn	Cd	Pb	Zn	Cd
		(mg/kg)	(mg/kg)	(μg/kg)	(μg/g dw)	(μg/g dw)	(ng/g dw)
depth 1	H2O	17.5±0.3	68±7.7	651.7±30.7	LOQ	0.01±0	LOQ
depth 2	H2O	17.4±0.4	59.1±7	652.3±29	LOQ	0.01±0	LOQ
depth 3	H2O	17.8±0.5	61.4±4.1	638.7±44.2	0.03±0.01	LOQ	LOQ
bulk 1	H2O	17.0	56.4	617	LOQ	0.01	LOQ
bulk 2	H2O	17.0	56.6	602	0.02	LOQ	LOQ
bulk 3	H2O	17.1	55.8	611	LOQ	LOQ	LOQ
depth 1	Ac-Nit 10x	17.2±0.2	70.1±15.2	654.5±38.9	LOQ	LOQ	LOQ
depth 2	Ac-Nit 10x	17.1±0.0	60.1±2.5	652±26.9	LOQ	LOQ	LOQ
depth 3	Ac-Nit 10x	16.5±0.4	58.2±3.1	626.5±2.1	LOQ	LOQ	LOQ
bulk 1	Ac-Nit 10x	16.6	57.1	562	LOQ	LOQ	LOQ
bulk 2	Ac-Nit 10x	16.5	55.4	592	0.03	LOQ	LOQ
bulk 3	Ac-Nit 10x	15.7	52.7	577	LOQ	LOQ	LOQ
depth 1	HM 10x	59.2±7.4	444.3±214.6	3153.3±1276.6	LOQ	0.15±0.18	13.26±11.81
depth 2	HM 10x	22.8±3.1	101.2±25.2	866.3±175.2	LOQ	LOQ	LOQ
depth 3	HM 10x	21.2±0.7	76.6±11.8	703±80.7	LOQ	LOQ	LOQ
bulk 1	HM 10x	138	952	7000	LOQ	1.33	7.73
bulk 2	HM 10x	18.8	65	600	LOQ	LOQ	LOQ
bulk 3	HM 10x	18.7	64.5	602	LOQ	0.00	LOQ

10x HM treatment

HM added to soil: Pb: 54.7 mg/kg Zn: 217.5 mg/kg

Cd: 2.1 mg/kg

LOQ ... Limit of quantification: 6,2 µg Pb/L; 1,2 µg Zn/L; 545 ng Cd/L

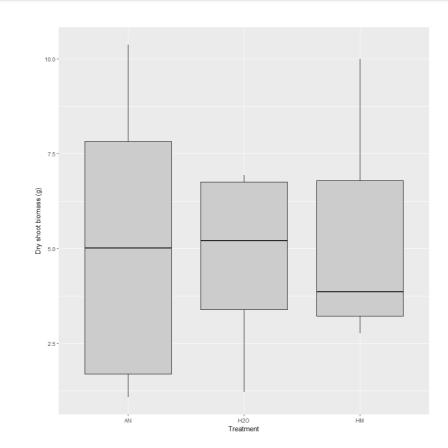
Roots accumulated metals

AVERAGE by replicates (3x)

	TOTAL conc. in ROOTS			
	Pb	Zn	Cd	
	(mg/kg)	(mg/kg)	(μg/kg)	
H2O	2.3±1.0	17.9±3.4	284.3±78.7	
AN 10x	3.2±0.8	20.7±4.1	350.3±87.0	
HM 10x	10.6±6	62.9±34.0	1862.7±1206.0	
10x HM treatment	19,4 %	28,9 %	88,7 % of added HM	

Pb: 54.7 mg/kg Zn: 217.5 mg/kg Cd: 2.1 mg/kg

IETU - Institute for Ecology of Industrial Areas, Katowice, Poland



Biomass of *M. giganteus* under metals stress did not change

Treatment	p (dry shoots)
H ₂ O-AN	0.9854233
HM-AN	0.9945335
HM-H ₂ O	0.9626671

IETU - Institute for Ecology of Industrial Areas, Katowice, Poland

n = 7

Bacterial abundance

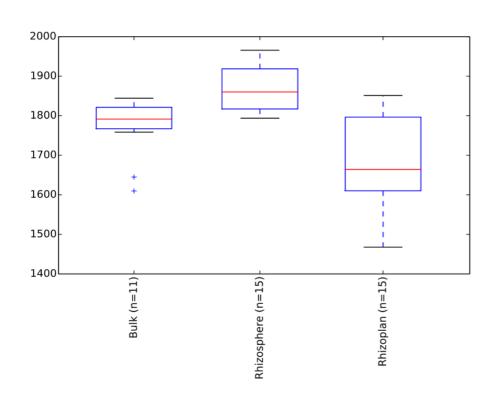
Bacterial 16S rRNA gene copy number/ng DNA

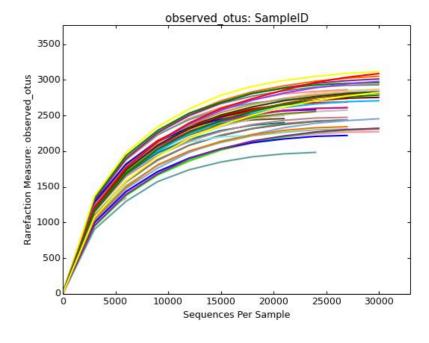
Significance	Soil comp.	Mean
а	Rhizoplane	389.1
а	Rhizosphere	343.7
b	Bulk	260.4

By treatment

Significance	Treatment	Mean	
а	AN10x	384.6	
а	HM10x	362.7	
а	H2O	328.2	

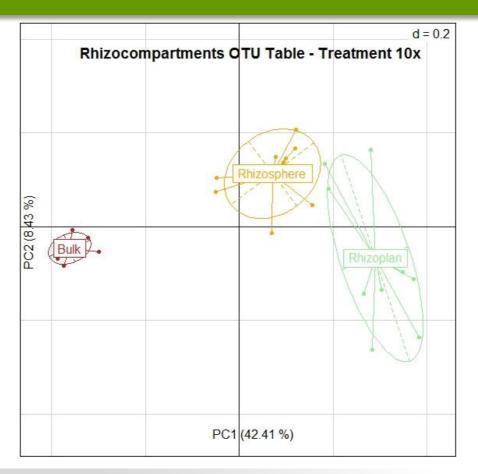
Alpha diversity: lower in rhizoplane and the lowest in endosphere




10

a, b, c ... Statistically different samples, Duncan's test

α-diversity and sequencing effort

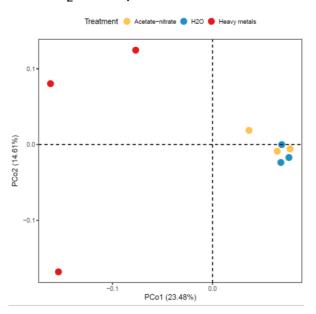


11

Bacterial communities in three rhizocompartments are different

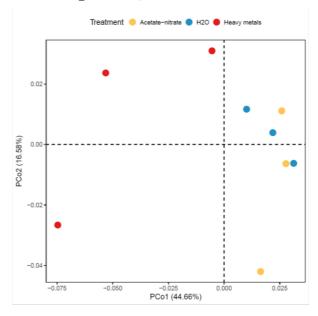
IETU - Institute for Ecology of Industrial Areas, Katowice, Poland

Bacterial genera in **bulk** soil



Bacterial structure in **bulk soil**

OTU 97 %, 19802 reads


Unweighted Unifrac (Adonis)

- BUL: p = 0.003
- $H_2O-HM: p = 0,0019$
- AN-HM: p = 0.0014
- H_2O-AN : p = 0,2

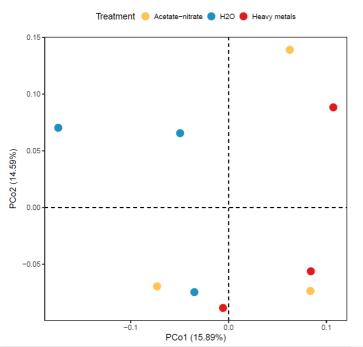
Weighted Unifrac (Adonis)

- BUL: p = 0.006
- $H_2O-HM: p = 0,0014$
- AN-HM: p = 0.0014
- H_2O-AN : p = 0,2

Bacterial genera in rhizosphere

Rhizosphere, Genus, >0.7% relative abundance

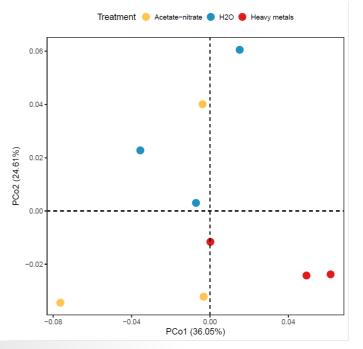
IETU - Institute for Ecology of Industrial Areas, Katowice, Poland



Bacterial structure in rhizosphere

OTU 97 %, 19802 reads

Unweighted Unifrac (Adonis):

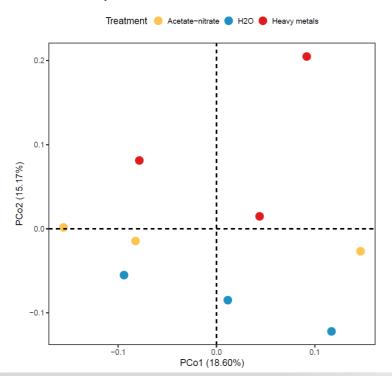

- RH: p = 0.027
- $H_2O-HM: p = 0,0014$
- AN-HM: p = 0.4
- $H_2O-AN: p = 0,1$

IETU - Institute for Ecology of Industrial Areas, Katowice, Poland


Weighted Unifrac (Adonis):

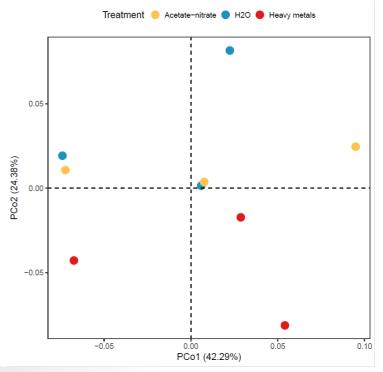
- RH: p = 0.019
- $H_2O-HM: p = 0,1$
- AN-HM: p = 0.1
- H_2O-AN : p = 0.301

Bacterial genus in rhizoplane



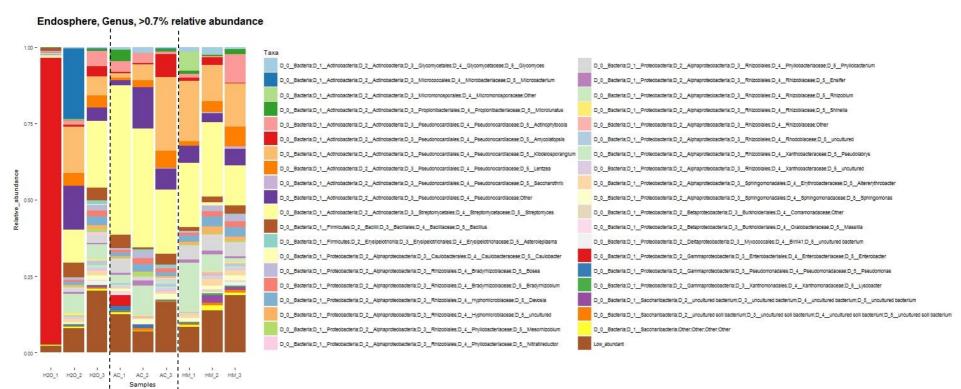
Bacterial structure in rhizoplane

OTU 97 %, 19802 reads



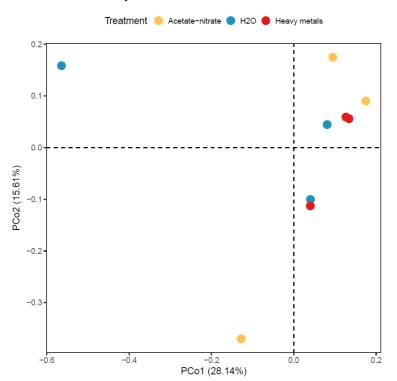
PL:
$$p = 0.097$$

Weighted Unifrac (Adonis):


PL:
$$p = 0.453$$

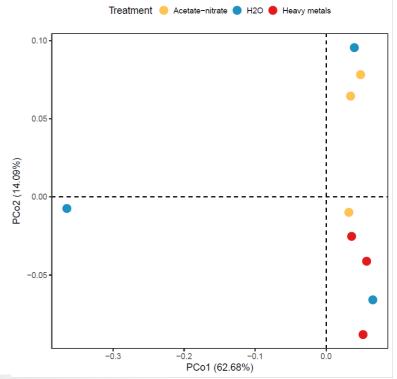
18

Bacterial genera in endosphere



Bacterial structure in endosphere

OTU 97 %, 11283 reads



END:
$$p = 0.485$$

Weighted Unifrac (Adonis):

END:
$$p = 0.482$$

20

Bacterial responders to metal stress

Bulk soil	Rhizosphere	Rhizosphere Rhizoplane	
Solirubrobacter	Luteolibacter	Luteolibacter	Streptomyces
Roseiflexus	Roseiflexus	Roseiflexus	Glycomyces
Pir4 lineage	Flavisolibacter	Flavisolibacter	Kibdelosporangium
Xanthomonas	Nocardioides	Nocardioides	Devosia
Bacillus	Pseudoxanthomonas	Bacillus	Rhizobium
43 responders in total	26 responders in total	20 responders in total	23 responders in total

Uncorrected IndVal index for presented OTUs: 1.00-0.93 (p < 0.05) (De Cáceres and Legendre, 2009)

Metal responders will be further analysed for known PGPR properties.

Thank you for your attention

